PowerShell Integration
with VMware® View™ 4.5/4.6

EEEEEEEEEEEEEEEEEEE

vmware



PowerShell Integration
with VMware View 4.5 /4.6

Table of Contents

INErOdUCTION . 3
VMWAre VIBW . oo e e e e e e e e e e e e e e e 3
Windows PowerShell .. ... ... 3

Architecture . ... 4
Cmdlet dil. .. 4
Communication with Broker . ... ... 4

VMware View PowerCLI Integration. . ... .. . . e 5
VMware View PowerCLI Prerequisites. . . ... .. i 5
Using VMware View PowerCLIl ... ... . . e 5
VMware View PowerCLI cmdlets . ... . 6

vSphere PowerCLI Integration. . .. ... . . e 7
Examples of VMware View PowerCLI and VMware vSphere PowerCLI Integration 7

Passing VMs from Get-VM to VMware View PowerCLIcmdlets .............. 7
Registering a vCenter Server. ... . . e 7
Using Other VMware vSphere Objects . ... ... . e 7

Advanced UsSage . ... 8
Integrating VMware View PowerCLI into Your Own Scripts .................... 8
Scheduling PowerShell Scripts. . ... 8

Workflow with VMware View PowerCL| and VMware vSphere PowerCLI ........... 9

Sample SCriptS ... 10
Add or Remove Datastores in AutomaticPools ........... ... .. ... ... .. .... 10
Add or Remove Virtual Machines. . ... .. 11
Inventory Path Manipulation. . ... ... . . . . . . . e 14
POl POOI USage . . oo e 15

Basic Troubleshooting. . ... .. 18

KNOWN [SSUES . . 18
Disk Specification Settings Reset on Linked Clone Pool Update............... 18
Get-DesktopVM Sometimes Returns Incorrect Pool Information in
Environments with Multiple vCenter Servers. . ........ ... . . . . . .. 19
Piping to Add-ManualPool from Get-VM May Result in an Unexpected
Error in Environments with Multiple VMware vCenter Servers. ................ 19
Piping to Send-OfflineSessionRollback or Send-VMReset from Get-VM
May Result in the Wrong Virtual Machine Being Rolled Back or Reset.......... 19

About the Authors. . .. 20

TECHNICAL WHITE PAPER / 2



PowerShell Integration
with VMware View 4.5 /4.6

Introduction

VMware View

VMware® View™ is a best-in-class enterprise desktop virtualization platform. VMware View separates the
personal desktop environment from the physical system by moving desktops to a datacenter, where users can
access them using a client-server computing model. VMware View delivers a rich set of features required for
any enterprise deployment by providing a robust platform for hosting virtual desktops from VMware vSphere™

Windows PowerShell

Windows PowerShell is Microsoft’s command line shell and scripting language. PowerShell is built on the
Microsoft .NET Framework and helps in system administration. By providing full access to COM (Component
Object Model) and WMI (Windows Management Instrumentation), PowerShell enables administrators to
perform administrative tasks on both local and remote Windows systems.

Administrators can manage the computers in the enterprise and perform administrative tasks from the
command line using built-in emdlets, which are specialized .NET classes. Unlike most other command line
interfaces, PowerShell commands have been standardized using a verb-noun naming convention known as a
cmdlet. This convention provides a clear description of the emdlet, and enables access to different Windows
components like the registry, file system, services, processes, and others. There are sufficient cmdlets to
support most administrative activities.

This technical paper covers the integration of VMware View PowerCLI with Windows PowerShell and VMware
vSphere PowerCLI.

TECHNICAL WHITE PAPER / 3



PowerShell Integration
with VMware View 4.5 /4.6

Architecture

Cmdlet dli

VMware View PowerCLI emdlets are provided by a dll, which is installed as part of the VMware View
Connection Server (server\bin\PowershellServiceCmdlets.d11l) under the VMware Connection Server

installation). This d11, once registered with PowerShell, allows all VMware View PowerCL| cmdlets to be run on
the VMware Connection Server.

-_

ADAM

Broker Service |ammmall View PowerCLI

Connection Server PowerShell

Windows Server

Communication with Broker

VMware View PowerCL| emdlets send requests to the VMware Connection Server, using RPC-like calls to a
service running under the VMware View Connection Broker service. As a result, the VMware View PowerCLI
cmdlets must be run on a VMware View Standard or Replica Connection Server.

However, using the Windows Management Framework (which includes PowerShell 2.0 and Windows Remote
Management), PowerShell emdlets can be remotely invoked from another host. Note that in a remote
PowerShell session, you would need to run add-snapin.ps1 to load the VMware View PowerCL| cmdlets.

TECHNICAL WHITE PAPER / 4



PowerShell Integration
with VMware View 4.5 /4.6

VMware View PowerCLI Integration

VMware View PowerCLI Prerequisites

The following are the prerequisites for VMware View PowerCLI execution:

* VMware View Connection Server or VMware View Replica Server, installed and configured appropriately
* Windows PowerShell installed (minimum supported version level v1)

» Microsoft NET Framework 2.0 SP1 or higher installed

* Optional: VMware vSphere PowerCLI

Using VMware View PowerCLI

* Launch VMware View PowerCLI using Start>All Programs>VMware>View PowerCLI. This will launch a
PowerShell command prompt.

* You may get an error stating that Execution of scripts is disabled on this system. If so, execute the
command Set-ExecutionPolicy AllSigned. Then close and relaunch VMware View PowerCLI. You may be
prompted to accept the VMware code signing certificate

* You will now have a PowerShell console with the VMware View PowerCLI emdlets loaded
* Get-Help can be used to get a full definition for each cmdlet

* Inorder to use the View cmdlets, the user must be a View Administrator with full privileges

#Administrator: Yiew PowerCLI
“» Get-Help Send—SessionDisconnect
—SessionDisconnect
SYMNOPSIS

Sends a disconnect request for an active remote

SYNTAR

Send-SessionDisconnect —Session_id [{string>] [{CommonParameters>]

DESCRIFTION

RELATED LINKS

the examples, tyy p Se i Disconnect —exampl
information, type e e onnect —detai
oF i " )3

hnical il Disconnect -Full®.

Figure 1: Get-Help Send-SessionDisconnect executed in VMware View PowerCLI command prompt

TECHNICAL WHITE PAPER / 5



PowerShell Integration
with VMware View 4.5 /4.6

VMware View PowerCLI cmdlets

Add-AutomaticLinkedClonePool Update-AutomaticLinkedClonePool
Add-AutomaticPool Update-AutomaticPool
Get-ComposerDomain Get-ConnectionBroker
Update-ConnectionBroker Get-DesktopPhysicalMachine
Get-DesktopVM Send-VMReset
Get-EventReportList Get-GlobalSetting
Update-GlobalSetting Get-License

Set-License Send-LinkedCloneRebalance
Send-LinkedCloneRecompose Send-LinkedCloneRefresh
Get-LocalSession Send-LocalSessionRollback
Add-ManualPool Update-ManualPool
Add-ManualUnmanagedPool Update-ManualUnmanagedPool
Get-Monitor Get-Pool

Remove-Pool Add-PoolEntitlement
Get-PoolEntitlement Remove-PoolEntitlement
Get-ProfileDisk Get-RemoteSession
Send-SessionDisconnect Send-SessionLogoff
Get-TerminalServer Add-TerminalServerPool
Update-TerminalServerPool Get-User
Remove-UserOwnership Update-UserOwnership
Add-ViewVC Get-ViewVC

Remove-ViewVC Update-ViewVC

TECHNICAL WHITE PAPER / 6



PowerShell Integration
with VMware View 4.5 /4.6

vSphere PowerCLI Integration

VMware View PowerCL| emdlets can be used along with VMware vSphere PowerCL| emdlets. If VMware
vSphere PowerCLI is installed on the VMware Connection Broker, VMware vSphere emdlets will also be loaded
when launching VMware View PowerCLI.

Examples of VMware View PowerCLI and VMware vSphere PowerCLI Integration

View PowerCLI supports piping of, and use of, the ID/Name fields from virtual machine and VMware Virtual
Infrastructure Server objects as obtained from Get-vM and Connect-VIServer
(or $global:DefaultvIiServer) respectively.

Passing VMs from Get-VM to VMware View PowerCLI cmdlets
Get-VM -name <VM name>| Add-ManualPool -pool_id <pool id> -vc_id (Get-ViewVC —serverName
<server>).vc_id

Registering a vCenter Server
Connect to and register a vCenter Server

Connect-VIServer <server> | Add-ViewVC —password <password>
Registering the currently connected vCenter Server

$global:DefaultVIServer | Add-ViewVC —password <password>

Using Other VMware vSphere Objects

VMware View PowerCLI references VMware vSphere objects by their path rather than their ID. The only
exceptions for this are VMs and ESX hosts which are referred by IDs.. As the path is not readily available from
VMware vSphere PowerCLI, this can pose a problem in referencing templates, datastores, resource pools, and
so on when using a VMware vSphere cmdlet.

A path can be determined programmatically from a VMware vSphere inventory object based on its ParentId
or FolderId, and functions to construct a path in this manner can be found in this paper in the Sample Scripts
section, under “Inventory Path Manipulation.” Below is an example using these functions to create an Automatic
Pool (note that a datastore path is constructed using the cluster path obtained from a resource pool).

Get-ViewVC -serverName vc.mydom.int | Add-AutomaticPool -pool id autol —displayName
‘ADP1l’ -namePrefix “adpl-{n:fixed=4}"” -vmFolderPath GetPath(Get-Folder “Guests”) -resource-
PoolPath GetPath(Get-ResourcePool “Resources”) -templatePath GetPath(Get-Template “Auto-
Template”) -dataStorePaths (GetDatastorePathFromResourcePool (Get-Datastore *“datatorel”)
(Get-ResourcePool “Resources”) ) -customizationSpecName ‘Windows 7 Variation 3’ -minimum-
Count 4 -maximumCount 10

TECHNICAL WHITE PAPER / 7



PowerShell Integration
with VMware View 4.5 /4.6

Advanced Usage
Integrating VMware View PowerCLI into Your Own Scripts

You can load VMware View PowerCLI emdlets directly for those situations where PowerShell scripts won’t be
run from the VMware View PowerCL| console. You can load emdlets by dot-sourcing the add-snapin.psil
script from the VMware Connection Server’s extras directory. Add the following line at the start of a script
using VMware View PowerCLI cmdlets:

. “<install directory>\Server\extras\PowerShell\add-snapin.psl”

The VMware View Connection Server installation directory (noted above as <install directory>) will be
under the path c:\Program Files\VMware\VMware View\ by default

Similar to launching from the Start Menu shortcut, this will also load the VMware vSphere PowerCL| ecmdlets if
installed.

Scheduling PowerShell Scripts

You can schedule a script to run at regular intervals. You will need to run the script from a batch file, which
can be scheduled as you normally would in Windows. To call a PowerShell script from a batch file, you should
execute the following command:

powershell -command “& ‘X:\Path\to\your\script.psl’ “

TECHNICAL WHITE PAPER / 8



PowerShell Integration
with VMware View 4.5 /4.6

Workflow with VMware View PowerCLI| and
VMware vSphere PowerCLI

In an enterprise, a typical workflow with VMware View PowerCLI and VMware vSphere PowerCLI integration
consists of executing the following steps

» Add license

Set-License —key <View License Key>

<View License Key> Will be set as the license key for VMware View
» Add VMware vCenter

Add-ViewVC -serverName <vCentername> -username <username> -password
<password>

The VC with <vCentername> hostname will be added as a VMware vCenter Server to VMware View

* Enable VMware View Composer

Add-ViewVC -serverName <vCentername> -username <username> -password <password>
-useComposer $true

VMware View Composer features will be enabled for the VMware vCenter Server, which will be used to create
automaticLinkedClonePools.

» Create Manual Pool (using piping)

Get-ViewVC -serverName <IP/FQDN> | Get-DesktopVM -name <vm name> |
Add-ManualPool -pool_ id <pool id>

This creates a manually provisioned pool of managed desktops. A manual pool provides access to an existing
set of machines. Any type of machine that can install View Agent is supported.

» Create Automatic Pool (Full Clone)

Get-ViewVC -serverName <IP/FQDN> | Add-AutomaticPool -pool id TestAutomaticPool
-namePrefix pad -templatePath /<datacenter>/vm/<template> -vmFolderPath /<datacenter>/
vm -resourcePoolPath /<datacenter>/host/<ESX>/Resources -dataStorePath /<datacenter>/
host/<ESX>/<datastore>

This creates an automatically provisioned full-clone pool. Desktop sources will be full virtual machines created
from a VMware vCenter Server template.

 Create Automatic Pool (Linked Clone)

Get-ViewVC -serverName <IP/FQDN> | Add-AutomaticLinkedClonePool -pool_id
TestAutomaticLinkedClonePool -namePrefix pad -parentVMPath /<datacenter>/vm/<parentVM>
-parentSnapshotPath /<Snapshot> -vmFolderPath /<datacenter>/vm -resourcePoolPath
/<datacenter>/host/<ESX>/Resources -dataStoreSpecs /<datacenter>/host/<ESX>/<datastore>
-composer_ad_id <composer ad id>

This creates an automatically provisioned linked-clone pool. VMware View Composer linked clones share the
same base image and use less storage space than full virtual machines. Linked-clone pools are created from a
snapshot.

TECHNICAL WHITE PAPER / 9



PowerShell Integration
with VMware View 4.5 /4.6

Sample Scripts

These scripts are intended as internal tools, or as reference materials for scripting. The scripts can be executed
using dot-source notation:

. ./<ScriptFile>.psl

Add or Remove Datastores in Automatic Pools

#
# AddRemoveDatastores.psl
# Function(s) for managing lists of datastores in automatic pools

#

####  Add a datastore to an automatic full-clone pool

#### Parameters:

#### $Pool : pool id of pool to be updated

HHHH $SNewDatastore : path to datastore to be added

function AddDatastoreToAutomaticPool

{ param ($Pool, $NewDatastore)
$PoolSettings = (Get-Pool -pool_id $Pool)
$datastores = $PoolSettings.datastorePaths + “;$NewDatastore”
Update-AutomaticPool -pool_id $Pool -datastorePaths $datastores

####  Remove a datastore from an automatic full-clone pool
#### Parameters:
#### $Pool : pool id of pool to be updated
HHHAH $DatastoreToRemove : path to datastore to be removed
function RemoveDatastoreFromAutomaticPool
{ param ($Pool, $DatastoreToRemove)
$PoolSettings = (Get-Pool -pool id $Pool)
$currentdatastores = $PoolSettings.datastorePaths
$datastores = “”
foreach ($path in $currentdatastores.split(“;”))
{
if(-not ($path -eqg $DatastoreToRemove))
{ $datastores = $datastores + “$path;”}

}
Update-AutomaticPool -pool_id $Pool -datastorePaths $datastores

#H##H Add a datastore to a linked clone pool

####  Parameters:

#H### $Pool : pool id of pool to be updated

#### $NewDatastore : path to datastore to be added

function AddDatastoreToLinkedClonePool

{ param ($Pool, $NewDatastoreSpec)
$PoolSettings = (Get-Pool -pool id $Pool)
$datastores = $PoolSettings.datastoreSpecs + “;$NewDatastoreSpec”
Update-AutomaticLinkedClonePool -pool_ id $Pool -datastoreSpecs $datastores

#H##H Remove a datastore from a linked clone pool
####  Parameters:
#H### $Pool : pool id of pool to be updated

TECHNICAL WHITE PAPER / 10



PowerShell Integration
with VMware View 4.5 /4.6

#### S$SDatastoreToRemove : path to datastore to be removed
function RemoveDatastoreFromLinkedClonePool
{ param ($Pool, $DatastoreToRemove)
$PoolSettings = (Get-Pool -pool id $Pool)
Scurrentdatastores = $PoolSettings.datastoreSpecs
Sdatastores = “”
foreach ($spec in $currentdatastores.split(“;”))
{
$path = $spec.split(“]1”)[1]
$pathToRemove = $DatastoreToRemove.split(“]”)[1]
if (-not $pathToRemove)

{
$pathToRemove = $DatastoreToRemove
}
if(-not ($path -eq $pathToRemove))
{
$datastores = $datastores + “$spec;”
}

}

Update-AutomaticLinkedClonePool -pool_ id $Pool -datastoreSpecs $datastores

Add or Remove Virtual Machines

# AddRemoveVMs.psl

# Functions for adding and removing VMs in View Pools.

# WARNING: These functions manipulate the ADAM directory directly, which may cause
faults in an environment if used incorrectly.

##H#H# Add a VM to a pool
#H##H Parameters:
##H#H# $VMObject:Virtual Machine object for VM to be added (obtained from Get-DesktopVM)
###H# $pool id:Name of pool to which VMObject should be added
#H#HH Example Usage: AddVMToPool (Get-DesktopVM -Name <vmname>) <pool id>
function AddVMToPool
{ param ($VMObject, $pool id)
if ($VMObject.vm)
{
if ($VMObject.isInPool -eq “true”)
{
Write-Error (“The specified VM (“ + $VMObject.Name + “) is already
assigned to a pool.”)
}
else
{
# Get the GUID for this VM’s entry in ADAM, creating an entry if necessary
$machine id = $VMObject.machine id
if (-not $machine id)
{
$machine id = AddVMToADAM $VMObject

}
# Locate the server group for the pool to which this VM belongs

TECHNICAL WHITE PAPER / 11



PowerShell Integration
with VMware View 4.5 /4.6

$poolObject = [ADSI](“LDAP://localhost:389/cn=" + $pool id + “,

ou=Applications,dc=vdi,dc=vmware,dc=int")

$serverGroup = [ADSI](“LDAP://localhost:389/"” + $poolObject.

get (“pae-Servers”))
# Add the distinguished name of the VM’'s ADAM entry to the server group

if ($serverGroup)

{
$machineName = $VMObject.Name

$serverGroupIld = $serverGroup.get(“cn”)
Write-Output (“Adding $machineName to pool $pool id”)

$SmachineList = &

{
trap [Exception]
{ continue;
}
$serverGroup.get (“pae-MemberDN")
}
if ($machineList)
{
if ($machineList.Count -gt 1)
{
$machineListAL = New-Object System.Collections.ArrayList(,$machineList)
}
else
{

$machineListAL = New-Object System.Collections.ArrayList
$null = S$machineListAL.add($machineList)

}
}
else
{

$machineListAL = New-Object System.Collections.ArrayList

}

$machineListAL.Add(“CN=" + $machine_id + “,ou=Servers,dc=vdi,dc=vmware,dc=int”)
$serverGroup.put (“pae-MemberDN” , $machineListAL.ToArray())
$serverGroup.SetInfo()

$null =

}

else

{

Write-Error “The object passed as a parameter was not a valid VM object (a valid
object would be returned by Get-DesktopVM).”
}

##H#H# Add multiple VMs to a pool

#H### Parameters:
Array of Virtual Machine objects to be added

###H $VMObject :
(obtained from Get-DesktopVM)
##H#H# $pool_ id : Name of pool to which VMObject should be added

##H#H# Example Usage: AddVMsToPool (Get-DesktopVM -Name agent*) <pool id>

TECHNICAL WHITE PAPER / 12



PowerShell Integration
with VMware View 4.5 /4.6

function AddVMsToPool
{ param ($VMs, $pool_id)
foreach($VM in $VMs)

{
AddVMToPool $VM $pool_id

#H##H Remove a VM from its pool. Will not remove ADAM entry for VM.
####  Parameters:
#H### $VMObject : Virtual Machine object for machine to be removed (obtained from
Get-DesktopVM)
####  Example Usage: RemoveVMFromPool (Get-DesktopVM -Name <vmname>)
function RemoveVMFromPool
{ param ($VMObject)
$ldapBaseURL = “LDAP://localhost:389/"
if ($VMObject -and $VMObject.vm)
{
if ($VMObject.isInPool -eq “true”)
{
$machineFull = [ADSI]($ldapBaseURL + “cn=" + $VMObject.machine id

+ “,ou=Servers,dc=vdi,dc=vmware,dc=int")

if($machineFull)
{

$machineDN = $machineFull.get(“distinguishedName”)
$serverGroupDN = $machineFull.get (“pae-MemberDNOf")
$serverGroup = [ADSI](“$ldapBaseURL” + $serverGroupDN)

if ($serverGroup)

{
$machineName = $machineFull.get(“pae-DisplayName”)
$serverGroupIld = $serverGroup.get(“cn”)
Write-Output (“Removing $machineName from server
group $serverGroupId”)
$machineList = $serverGroup.get (“pae-MemberDN")
$machineListAL = New-Object System.Collections.
ArrayList(,$machineList)
$machineListAL.Remove ($machineDN)
$serverGroup.put (“pae-MemberDN” , $SmachineListAL.
ToArray())
$serverGroup.SetInfo()
}
}
}
else
{
Write-Error “The specified machine is not part of a pool.”
}
}
else
{

Write-Error “The object passed as a parameter was not a valid VM object (a valid
object would be returned by Get-DesktopVM, for example).”

TECHNICAL WHITE PAPER / 13



PowerShell Integration
with VMware View 4.5 /4.6

#### Remove multiple VMs from their pools. Will not remove ADAM entries.
#### Parameters:
##H#H# $VMObject : Array of Virtual Machine objects to be removed from pools
(obtained from Get-DesktopVM)
###H# Example Usage: RemoveVMsFromPool (Get-DesktopVM -Name agent¥)
function RemoveVMsToPool
{ param ($VMs)

foreach($VM in $VMs)

{

RemoveVMFromPool $VM

Inventory Path Manipulation

#

# PathManipulation.psl

# Author: telliott

# Function(s) for manipulation/generation of vSphere inventory paths.

#

#H### Get the full vSphere path to an Inventory object from vSphere PowerCLI
#### Parameters:

#### $InventoryObject Individual vSphere PowerCLI object
#### Example Usage:

##H#H# GetPath(Get-VM -name myVM)

##H#H# GetPath(Get-ResourcePool | Select -first 1)

function GetPath($InventoryObject)

{

if($InventoryObject -and $InventoryObject.Id)

{
$path = “”
# Recursively move up through the inventory hierarchy, by parent or folder
if ($InventoryObject.ParentId)

{
$path = GetPath (Get-Inventory -Id $InventoryObject.ParentId)
}
elseif ($InventoryObject.FolderId)
{
$path = GetPath (Get-Folder -Id $InventoryObject.FolderId)
}

# Skip the “Datacenters” folder at the root
if (-not $InventoryObject.isChildTypeDatacenter)

{

# Add this object to the path

$path = $path + “/” + $InventoryObject.Name
}
$path

TECHNICAL WHITE PAPER / 14



PowerShell Integration
with VMware View 4.5 /4.6

#### Construct a View-friendly path to a datastore on a specific cluster (defined by a
Resource Pool)
#H##H Parameters:

##H#H# $Datastore Datastore object

###H# $ResourcePool Resource Pool in desired cluster

#H##H Example Usage:

#H##H GetDatastorePathFromResourcePool (Get-Datastore “datastorel”) (Get-

ResourcePool “Resources”)

function GetDatastorePathFromResourcePool ($Datastore,$ResourcePool)

{
$ClusterPath = GetPath(Get-Inventory -Id $ResourcePool.ParentId)
$path = $ClusterPath + “/” + $Datastore.Name
$Spath

Poll Pool Usage

#

# PollPoolUsage.psl

# Author: telliott

# Functions for polling current usage of pools, resizing them if they are at capacity.
#

##H#H# Check usage for all pools, warning or resizing if necessary
##H#H# Parameters:
##H#H# $increment : size by which to increase at-capacity automatic pool (defaults to 5)
function PollAllPoolsUsage
{ param (S$increment)

if(-not $increment)

{

Sincrement = 5

}

# Retrieve all pool objects and check each one individually

$pools = Get-Pool

foreach ($pool in $pools)

{

PollPoolUsage $pool $increment

####  Check current usage of a pool

####  Output a warning if all desktops for this pool are in use

#H##H# Increase the maximum size for such pools if possible

####

#### Parameters:

##H#H# $Pool : Pool object representing the pool to be checked

##H#H# $increment : size by which to increase at-capacity automatic pools

TECHNICAL WHITE PAPER / 15



PowerShell Integration
with VMware View 4.5 /4.6

function PollPoolUsage

{ param ($Pool, $increment)
## Get list of remote & local sessions for specified pool (will not output errors)
$remotes = Get-RemoteSession -pool_ id $Pool.pool_id -ErrorAction SilentlyContinue
$locals = Get-LocalSession -pool_id $Pool.pool_id -ErrorAction SilentlyContinue

## Count number of remote and local sessions in list
Sremotecount = 0

$localcount = 0

if ($remotes)

{
$remotecount = ([Object[]]($Sremotes)).Count
}
if($locals)
{
$localcount = ([Object[]]($locals)).Count
}

$totalcount = $localcount + S$Sremotecount

# Determine total or maximum number of desktops for this pool
$maxdesktops = 0
if($Pool.deliveryModel -eq “Provisioned”)

{
$maxdesktops = $Pool.maximumCount
}
else
{
$maxdesktops = $Pool.machineDNs.split(“;”).Count
}
Write-Output (“==== “ + $Pool.pool_id + * ====7)
Write-Output (“Remote session count: “ + $remotecount)

Write-Output (“Local session count: “ + $localcount)
Write-Output (“Total session count: “ + $totalcount)
Write-Output (“Maximum desktops: “ + $maxdesktops)

## I1f a pool is using all its desktops, increase the maximum size or output a

warning
## Linked Clone and Automatic Pools can be re-sized.
## Automatic Pools have desktopSource == “VC” && deliveryModel == “Provisioned”
## Linked Clone Pools have desktopSource == “SVI” && deliveryModel ==
“Provisioned”

if ($maxdesktops -eq $totalcount)

{

if ($Pool.deliveryModel -eq “Provisioned”)

{
$newmaximum = [int]$Pool.maximumCount + [int]$increment
if ($Pool.desktopSource -eq “VC")
{

Update-AutomaticPool -pool id $Pool.pool id -maximumCount
$newmaximum

}
elseif ($Pool.desktopSource -eq “SVI”")
{

TECHNICAL WHITE PAPER / 16



PowerShell Integration
with VMware View 4.5 /4.6

Update-AutomaticLinkedClonePool -pool_id $Pool.pool_id
-maximumCount $newmaximum

}

Write-Output (“Pool “ + $Pool.pool _id + “ is using 100% of its
desktops. Maximum VMs increased to “ + $newmaximum)

}

else

{
Write-Output (“Pool “ + $Pool.pool id + “ is using 100% of its desktops.
Consider increasing its capacity.”)

}

TECHNICAL WHITE PAPER / 17



PowerShell Integration
with VMware View 4.5 /4.6

Basic Troubleshooting

“View Server Connect FAILED” error when running a VMware View cmdlet

This error means that the VMware View PowerCL| emdlets are unable to connect to the VMware View
Connection Server. Check that the VMware View Connection Server service is running in the Windows
Services console.

“NoQueueManager” error when running a VMware View cmdlet

The VMware View Connection Server service may still be starting up. Wait a few minutes and then try again.
Should the problem persist, try restarting the VMware View Connection Server Windows service.

Known Issues

Disk Specification Settings Reset on Linked Clone Pool Update

When updating a linked clone pool, the settings for useTempbisk and useUserDataDisk will always default
back to $true. For pools where these settings should be $false, you can work around this by disabling
provision in the initial update, and then modifying ADAM directly to reset the disk specifications to their original
settings, as in the following script:

# Where $pool_id is the id of the pool to be updated

# Get the pool information

$poolObject = [ADSI](“LDAP://localhost:389/cn=" + $pool_id + “,ou=Applications,dc=vdi,dc
=vmware,dc=int")

$serverGroup =[ADSI](“LDAP://localhost:389/” + $poolObject.get(“pae-Servers”))

# If the pool is valid, get the Pool Disposable Disk setting, Update the pool with
spares, write back the Disk setting
if ($serverGroup)

{

$serverGroupIld = $serverGroup.get(“cn”)

$diskSpecs = $serverGroup.getex(“pae-SVIVmPersistentDiskSpec”)
If (1$?)

{

# No disk specs for this pool

$delete =1

}

else

{ $diskSetting = $serverGroup.getex(“pae-SVIVmPersistentDiskSpec”) }

# Perform the intended update, disabling provisioning
Update-automaticlinkedclonepool -pool Id $pool_ id —isProvisioningEnabled $false

# Write back the disk setting to the pool if it exists (if not, delete the
attribute) and enable the provisioning
If ($delete)

TECHNICAL WHITE PAPER / 18



PowerShell Integration
with VMware View 4.5 /4.6

$serverGroup.putex(1l, “pae-SVIVmPersistentDiskSpec”,$null)

}

else

{ $serverGroup.put(“pae-SVIVmPersistentDiskSpec”,$diskSetting)}
$serverGroup.put (“pae-VmProvEnabled”, 1)

$serverGroup.SetInfo()

}

Note that this script is provided as an example only.

Get-DesktopVM Sometimes Returns Incorrect Pool Information in Environments with
Multiple vCenter Servers

In VMware View environments with multiple VMware vCenter Servers, there may be multiple virtual machines
with the same MOID in different pools. Get-DesktopvM may return incorrect details for such virtual machines,
affecting the following attributes:

¢ machine id

e user_sid

e user displayname

e isInPool

e pool_id

e isLinkedClone

e composerTaks

e localState

Piping to Add-ManualPool from Get-VM May Result in an Unexpected Error in
Environments with Multiple VMware vCenter Servers

In VMware View environments with multiple VMware vCenter Servers, the same MOID may be assigned to
virtual machines residing in different pools. Piping virtual machine objects to Add-ManualPool from the
VMware vSphere PowerCL|I ecmdlet Get-vM may incorrectly result in an error stating that a virtual machine is
already part of a pool.

In cases where this occurs, the suspect virtual machine(s) can be re-created to generate a new MOID.
Piping to Send-OfflineSessionRollback or Send-VMReset from Get-VM May Result in
the Wrong Virtual Machine Being Rolled Back or Reset

In VMware View environments with multiple vCenter Servers, the same MOID may be assigned to virtual
machines residing in different pools. Piping VM objects to add-ManualPool from the VMware vSphere
PowerCL| cmdlet Get-vM may result in resetting a different VM than the one expected.

TECHNICAL WHITE PAPER / 19



PowerShell Integration
with VMware View 4.5 /4.6

About the Authors

Tom Elliott is a Sr. MTS in VMware. He has been working as a developer in the VMware View team in London
since 2007.

Raghavendra Babu is a QE Manager at VMware. Currently, he leads VMware View-Mgmt QE efforts from

Bangalore. He has a BE in Computer Science. His previous experience includes companies such as Dell India
R&D, Quark, and others.

N P Rao is a Software QE Engineer at VMware. Currently, he is part of the VMware View-Mgmt QE team in
Bangalore.

vmware

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com

Copyright © 2011 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed at
http:/wwwymware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be
trademarks of their respective companies. Iltem No: VMW_11Q1_PowerShell_WP_EN_P20_R1



	Introduction
	VMware View
	Windows PowerShell

	Architecture
	Cmdlet dll

	VMware View PowerCLI Integration
	VMware View PowerCLI Prerequisites
	Using VMware View PowerCLI 
	VMware View PowerCLI cmdlets

	vSphere PowerCLI Integration
	Examples of VMware View PowerCLI and VMware vSphere PowerCLI Integration
	Passing VMs from Get-VM to VMware View PowerCLI cmdlets 
	Registering a vCenter Server

	Using Other VMware vSphere Objects
	Integrating VMware View PowerCLI into Your Own Scripts
	Scheduling PowerShell Scripts

	Workflow with VMware View PowerCLI and VMware vSphere PowerCLI
	Sample Scripts
	Add or Remove Datastores in Automatic Pools
	Add or Remove Virtual Machines
	Inventory Path Manipulation
	Poll Pool Usage

	Basic Troubleshooting
	Known Issues
	Disk Specification Settings Reset on Linked Clone Pool Update
	Get-DesktopVM Sometimes Returns Incorrect Pool Information in Environments with Multiple vCenter Servers
	Piping to Add-ManualPool from Get-VM May Result in an Unexpected Error in Environments with Multiple VMware vCenter Servers
	Piping to Send-OfflineSessionRollback or Send-VMReset from Get-VM May Result in the Wrong Virtual Machine Being Rolled Back or Reset


