VMCI Sockets Programming Guide

for VMware Workstation 6.5 and VMware Server 2.0

6 vmware

VMCI Sockets Programming Guide

VMCI Sockets Programming Guide
Revision: 20080815
Item: EN-000054-00

You can find the most up-to-date technical documentation on our Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

© 2008 VMware, Inc. All rights reserved. Protected by one or more U.S. Patent Nos. 6,397,242, 6,496,847, 6,704,925, 6,711,672,
6,725,289, 6,735,601, 6,785,886, 6,789,156, 6,795,966, 6,880,022, 6,944,699, 6,961,806, 6,961,941, 7,069,413, 7,082,598,
7,089,377,7,111,086, 7,111,145,7,117,481, 7,149,843, 7,155,558, 7,222,221, 7,260,815, 7,260,820, 7,269,683, 7,275,136,
7,277,998, 7,277,999, 7,278,030, 7,281,102, 7,290,253, 7,356,679 7,409,487, 7,412,492, and 7,412,702; patents pending.
VMware, the VMware “boxes” logo and design, Virtual SMP and VMotion are registered trademarks or trademarks of VMware,

Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their
respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

mailto:docfeedback@vmware.com
http://www.vmware.com/support/
http://www.vmware.com/support

Contents

About This Book 5
Document Feedback 5

1 About VMCI Sockets 7
Introducing VMCI Sockets 7
How VMCI Sockets Work 8
Efficiency Compared to Network Sockets 8
Possible Use Cases 8
Contents of This Release 8
Experimental VMCI Library Deprecated 8
Mlustrated Connections with VMCI Sockets 9
Web Access with Stream VMCI Sockets 9
Home Directories with Datagram VMCI Sockets 10
Porting Existing Socket Applications 10
Including a New Header File 10
Changing AF_INET to VMCI Sockets 10
Obtaining the Context ID (CID) 10
The VMClISock_GetLocalCID() Function 11
Connection-oriented Stream Socket 11
Connectionless Datagram Socket 11
Initializing the Address Structure 11
Limitations on Persistence 11
Communicating Between Guests 12
VMCI Sockets and the Network Stack 12
Setting up a Networkless Guest 12

Communicating between Guest and Host 12
Using UDP Datagram Sockets 12

2 Using VMCI Sockets 13
Stream VMCI Sockets 13

Preparing the Server for a Connection 14
Socket() Function Call 14
Set and Get Socket Options 14
Bind() Function Call 15
Listen() Function Call 15
Accept() Function Call 15
Select() Function Call 15
Recv() Function Call 15
Send() Function Call 16
Close() Function Call 16
Poll() Information 16
Read() and Write() 16
Getsockname() Function 16

Having the Client Request a Connection 16
Socket() Function Call 16
Connect() Function Call 17
Send() Function Call 17

VMware, Inc.

VMCI Sockets Programming Guide

Recv() Function Call 17
Close() Function Call 17
Poll() Information 17
Read() and Write() 17
Datagram VMCI Sockets 18

Preparing the Server for a Connection 18
Socket() Function 18
Socket Options 18
Bind() Function 19
Getsockname() Function 19
Recvfrom() Function 19
Sendto() Function 19
Close() Function 19

Having the Client Request a Connection 19
Socket() Function 20
Sendto() Function 20
Connect() and Send() 20
Recvfrom() Function 20
Close() Function 20

A Learning About TCP Sockets 21
Hidden Information 21
Resources on the Web 21

Wikipedia 21
IBM 21
Sockaddr 21
MSDN 21
Linux Man Pages 22
Hardcopy Books 22

Glossary 23

Index 25

4 VMware, Inc.

About This Book

The VMCI Sockets Programming Guide describes how to create and program virtual machine communications
interface (VMCI) sockets, a familiar API to facilitate fast and efficient communication between a host and its
virtual machines.

Revision History

VMware® revises this guide with each release of the product or when necessary. A revised version can contain
minor or major changes. Table 1 summarizes the significant changes in each version of this guide.

Table 1. Revision History

Revision Description

20080327 First draft of this manual for possible inclusion in early beta releases.

20080620 Second draft for VMware Workstation 6.5 Beta 2 and VMware Server 2.0 RC1 releases.

20080815 Third draft, with socket options, for VMware Workstation 6.5 RC release.

Intended Audience

This guide is intended for programmers planning to develop applications with VMCI sockets to create C or
C++ networking applications that target guest operating systems on VMware hosts, or virtual machine
communications. Because VMCI sockets are based on TCP sockets, this guide assumes that you are familiar
with either Berkeley sockets or Winsock, the Windows implementation.

APl and SDK Documentation

VMware provides many different products targeting different developer communities and platforms. For the
most up-to-date information about API and SDK products, this is the place to go:

http://www.vmware.com/support/pubs/sdk_pubs.html

Document Feedback
VMware welcomes your suggestions for improving our documentation. Send your comments to:

docfeedback@vmware.com

Technical Support and Education Resources

The following sections describe the technical support resources available to you. You can access the most
current versions of other VMware manuals by going to:

http://www.vmware.com/support/pubs

VMware, Inc. 5

http://www.vmware.com/support/pubs/sdk_pubs.html
mailto:docfeedback@vmware.com
http://www.vmware.com/support/pubs

VMCI Sockets Programming Guide

Online Support

You can submit questions or post comments to the Developer Community: SDKs and APIs forum, which the
VMware technical support and product teams monitor. You can access the forum at:

http://communities.vmware.com/community/developer

Support Offerings
To find out how VMware support offerings can help meet your business needs, go to:

http://www.vmware.com/support/services

VMware Education Services

VMware courses offer extensive hands-on labs, case study examples, and course materials designed to be used
as on-the-job reference tools. For more information about VMware Education Services, go to:

http://mylearnl.vmware.com/mgrreg/index.cfm

6 VMware, Inc.

http://communities.vmware.com/community/developer
http://www.vmware.com/support/services
http://mylearn1.vmware.com/mgrreg/index.cfm

About VMCI Sockets

A socket is a communications endpoint with a name and address in a network. Sockets were made famous by
their implementation in Berkeley Unix, and universal by their incorporation into Windows.

VMware now offers a similar implementation of virtual machine communications interface (VMCI) Sockets.
This chapter contains the following sections:

® “Introducing VMCI Sockets” on page 7

B “Contents of This Release” on page 8

® “Illustrated Connections with VMCI Sockets” on page 9

m “Porting Existing Socket Applications” on page 10

B “Communicating Between Guests” on page 12

B “Communicating between Guest and Host” on page 12

This manual assumes that you know about either Berkeley sockets or Winsock, the Windows implementation.
If you are new to sockets, see Appendix A, “Learning About TCP Sockets,” on page 21.

Socket-based communications usually employ a client-server approach. One application (the server) tries to
make itself always available while another (the client) requests services as needed.

Data going over a socket can be in any format, and travel in either direction.

Introducing VMCI Sockets

The VMware VMCI sockets library offers a familiar API to support fast and efficient communication between
a virtual machine and its host, or between virtual machines on the same host.

VMCT sockets are similar to other socket types. Like Unix (local) sockets, VMCI sockets work on a discrete
physical machine, while Unix sockets perform interprocess communication on a discrete local system. With
Internet sockets, communicating processes usually reside on different systems across a network. Like Internet
sockets, VMCI sockets allow different virtual machines to communicate with each other, provided they reside
on the same VMware host.

If you have existing socket-based applications, few code changes are required for VMCI sockets. If you do not
have socket-based applications, you can easily find public-domain code on the Web.

Re-purposing any networking program to use VMCI sockets requires minimal effort, because VMCI sockets
behave like traditional Internet sockets on a given platform. Some socket options do not make sense for
communication across the VMCI device; such options are silently ignored to ease program portability.

Modification is straightforward. You include a new header file. Before the socket () function call, you call the
VMCISock_GetAFValue() function to return the VMCI sockets address family to replace AF_INET. You also
allocate a different socket addressing structure, sockaddr_vm instead of sockaddr_in.

Otherwise VMCI sockets use the same API as Berkeley sockets or Windows sockets.

VMware, Inc. 7

VMCI Sockets Programming Guide

How VMCI Sockets Work

VMCI sockets communicate from guest to guest, or guest to host, on one VMware host. They can also be used
for interprocess communications on a single guest. However you cannot use VMCI sockets between virtual
machines running on two separate physical machines, or from one host to another host across a network.

Communicating guest virtual machines must be running, not powered off.

Efficiency Compared to Network Sockets

Early performance testing indicates VMCI sockets have low latency and high throughput. Socket endpoints
communicate with each other at, or close to, the speed of memory.

Because communication is on a single physical system, VMCI sockets can attain performance comparable to
Unix sockets even though they enable communication across virtual machines like Internet sockets do.

VMware tailored its VMCI sockets implementation for high performance, especially with large data sets.
VMware recommends message sizes larger than 512 bytes to fully realize the performance benefits. On a
discrete physical machine, VMCI sockets are higher performance than over-the-wire network sockets, as you
would expect.

Interprocess communication implies data transfer among processes on the same system. VMCI sockets
support this. VMCI sockets also allow communication among processes on different systems, even ones
running different versions and types of operating systems. This combines the best aspects of interprocess
communication with the advantages of networking in a hosted virtual environment.

Possible Use Cases
Here are some potential applications for VMCI sockets:
B Improved intra-host performance for socket-modified applications.
® Choice of stream or datagram communication for off-the-network virtual machines.
B Increased privacy of communications for hosted virtual machines.
B Alternate data path for administrative control of guest virtual machines.
® Database-backed applications can be made more efficient when going off-box for data.

B A host-guest file system can be implemented.

Contents of This Release

In the VMware Server 2.0 and VMware Workstation 6.5 releases, stream sockets are not supported between
host and guest, so you must use datagram sockets instead. Stream sockets work from guest to guest only.
Datagram sockets work from guest to guest, host to guest, and guest to host.

As of the VMware Server 2.0 RC2 and VMware Workstation 6.5 RC releases, you can set the minimum,
maximum, and default size of communicating stream buffers. See “Set and Get Socket Options” on page 14.

Experimental VMCI Library Deprecated

The VMCI library was released as an experimental C language interface with Workstation 6.0. A README file
in the VMCI directory and a document on the VMware Web site described how to enable the facility and
develop applications with it. The experimental VMCI library offered programmers two choices: a datagram
API and a shared memory APL Both these interfaces have been deprecated.

In this release, an API with familiar sockets interface and functionality is available. This new library replaces
the original shared memory implementation and has more flexible algorithms, wrapped in a stream sockets
interface for external presentation. Similarly, an interface with datagram sockets replace VMCI datagrams. The
new VMCI sockets interfaces are now supported, not experimental.

8 VMware, Inc.

Chapter 1 About VMCI Sockets

llustrated Connections with VMCI Sockets

The illustrations in this section are merely examples of what can be done using VMCI sockets. VMware does
not provide modified versions of any third-party applications shown here. However, open-source versions of
Firefox, Apache, and NFS are available, so VMCI sockets modification is feasible.

Web Access with Stream VMCI Sockets

Figure 1-1 shows two Workstation hosts, one Windows based and the other Linux based. On each host,
modified Firefox browsers on Windows and Linux virtual machines are communicating with a modified
Apache server on a separate virtual machine through VMCI sockets. Meanwhile, a Web browser on each host
is communicating with a Web server on the other host using standard TCP/IP networking.

Figure 1-1. VMware Hosts with Stream VMCI Sockets in Guests

Windows host Linux host
Windows Windows Linux Windows Linux Linux
f N N N\ : N N R
Firefox Apache Firefox Firefox Apache Firefox
I I I
vsocklib.dll vsocklib.dll vsocklib.dll
| | |
VMCI socket VMCI socket VMCI socket VMCI socket VMCI socket VMCI socket
VMCI driver <% VMCI driver (< VMCI driver VMCI driver (<% VMCI driver < VMCI driver
\\ L L J \\ L L J
[[[[[[
VMCI virtual device VMCI virtual device
Web server IE7 Apache Firefox
I I I I
TCP/IP < > TCP/IP

When the Firefox browsers on Linux and Windows request a connection to the Apache Web server, the VMCI
sockets layer creates a socket endpoint and establishes a connection through the VMCI driver and virtual
device. The VMCI sockets layer on the system with Apache receive the connection and provide an accepted
socket through the socket on which Apache was listening.

Meanwhile, unmodified Web browsers on the physical machines (Windows host and Linux host) are sending
requests to each others” Web servers over a standard TCP/IP network connection. If guest operating systems
needed to access the Web outside the physical machine, they would have to use different (unmodified) Web

browsers, or have a fallback capability, outside of VMCI sockets.

VMware, Inc.

VMCI Sockets Programming Guide

Home Directories with Datagram VMCI Sockets

Figure 1-2 shows a VMware host acting as the NFS server for the home directories of its three clients, a
Windows guest and two Linux guests. NFS uses datagram sockets for file I/O. The NFS code on the VMware
host must be slightly modified to use VMCI sockets instead of UDP datagrams.

Figure 1-2. VMware Host with Datagram VMCI Sockets for NFS in Guests

host

Windows Linux Linux
(- N (- N ~N

Firefox Apache Firefox
I
vsocklib.dll
I

VMCI socket VMCI socket VMCI socket

VMCI driver VMCI driver VMCI driver

U ¢ O\ i L i J
VMCI virtual device

! ! {

NFS modified for VMCI sockets

Porting Existing Socket Applications

10

This section discusses the major differences between Berkeley sockets and VMCI sockets, highlighting the
items you need to change in your existing socket applications.

Including a New Header File

To obtain the VMware definitions for VMCI sockets, include the new vmci_sockets.h header file, which is
packaged with VMware Tools.

#include “vmci_sockets.h”

Changing AF_INET to VMCI Sockets

Call the VMCISock_GetAFValue () to obtain the VMCI address family. Declare structure sockaddr_vminstead
of sockaddr_in. In the socket () call, replace the AF_INET address family with the VMCI address family.

When the client creates a connection, instead of providing an IP address to choose its server, the client must
provide the context ID of a virtual machine.

Obtaining the Context ID (CID)

In hardware version 6 (Workstation 6.0.x releases), the VMCI virtual device is not present by default. After you
upgrade the virtual hardware to version 7, the following line appears in the . vmx configuration file:

vmci®.present = “TRUE”
When the virtual machine powers on, a new vmci0. id line appears added to the configuration file.

In hardware version 7 (Workstation 6.5 releases) the VMCI virtual device is present by default. When you
create a new virtual machine, the . vmx configuration file contains lines specifying PCI slot number and ID of
the VMCI device.

VMware, Inc.

Chapter 1 About VMCI Sockets

On the vmci0.id line, context ID is the hexadecimal number in double quotes.

vmci0.pciSlotNumber = “36”
vmciO.id = "1066538581"

The host usually has CID = 2.

The VMCISock_GetLocalCID() Function

For convenience, the VMCISock_GetLocalCID() function returns the local system’s CID. It works on both host
server and guest virtual machines.

Connection-oriented Stream Socket

To establish a stream socket, the source code includes these declarations and calls:

int sockfd_stream;
int afVMCI = VMCISock_GetAFValue();

if ((sockfd_stream = socket(afVMCI, SOCK_STREAM, 0)) == -1) {
perror(“Socket”);
goto cleanup;

}
AF_INET has been replaced by afVMCI as set by VMCISock_GetAFValue().

Connectionless Datagram Socket

To establish a datagram socket, the source code includes these declarations and calls:

int sockfd_dgram;
int afVMCI = VMCISock_GetAFValue();

if ((sockfd_dgram = socket(afVMCI, SOCK_DGRAM, 0)) == -1) {
perror(“Socket”);
goto cleanup;

}
Again, AF_INET has been replaced by afVMCI as set by VMCISock_GetAFValue().

Initializing the Address Structure

To initialize the address structure passed to bind (), the source code includes these statements; sockaddr_vm
replaces sockaddr_in used for network sockets.

struct sockaddr_vm my_addr = {0};
my_addr.svm_family = afVMCI;
my_addr.svm_cid = VMADDR_CID_ANY;
my_addr.svm_port = VMADDR_PORT_ANY;

The first line declares my_addr as a sockaddr_vm structure and initializes it with zeroes. AF_INET has been
replaced by afVMCI as above. VMADDR_CID_ANY and VMADDR_PORT_ANY are predefined so that at runtime on
the server, the appropriate context ID and port values can be filled in during the bind operation.

The initiating side of the connection, usually the client, must provide the proper context ID and port, instead
of VMADDR_CID_ANY and VMADDR_PORT_ANY.

Limitations on Persistence
VMCT sockets connections are dropped after suspend and resume of a virtual machine.

Connections cannot survive live migration with VMotion from source to destination host.

VMware, Inc. 11

VMCI Sockets Programming Guide

Communicating Between Guests

To communicate between two guest virtual machines on the same host, you can establish a VMCI sockets
connection using either the SOCK_STREAM or the SOCK_DGRAM socket type.

Programmers use stream sockets for their high reliability, and datagram sockets for speed and low overhead.

VMCI Sockets and the Network Stack

Most virtual machines are installed with networking enabled, but if limited access is sufficient, VMCI sockets
could replace TCP networking, saving memory and processor bandwidth by disabling the network stack.

Typically however, networking is enabled. VMCI sockets can still make some operations run faster.

Setting up a Networkless Guest

You can install a virtual machine without any networking packages, so it is incapable of connecting to the
network. The system image of a network-free operating system is likely to be small, and isolation is a security
advantage, at the expense of convenience. Install network-free systems as a networkless guest.

You create a networkless guest with the option “Do not use a network connection” in Workstation wizard.
After installing VMware Tools, you can use VMCI sockets to communicate with the networkless guest.

After its creation, you can also transform a network-capable guest into a networkless guest by removing all its
virtual networking devices in the Workstation UL

Communicating between Guest and Host

To communicate between a guest virtual machine and the host, you can establish a VMCI sockets connection
using the SOCK_DGRAM socket type.

Using UDP Datagram Sockets

The VMCI sockets datagram offers an alternative to the AF_INET datagram.

12 VMware, Inc.

Using VMCI Sockets

This chapter describes the details of creating VMCI sockets to replace TCP sockets, in two sections:
® “Stream VMCI Sockets” on page 13
® “Datagram VMCI Sockets” on page 18

Stream VMCI Sockets

The flowchart in Figure 2-1 shows how to establish connection-oriented sockets on server and client.

Figure 2-1. Connection-Oriented Stream Sockets

Server socket()
y
bind()
y
listen() Client socket()
y
accept()
context ID

wait for client connection

i < connect()

establish connection
select()
4
recv() < send()
transmit data
y loop
send() recv()
reply to data
4
close() close()

With VMCI sockets and TCP sockets, the server waits for the client to establish a connection. After connecting,
the server and client communicate though the attached socket. In VMCI sockets, a virtual socket can have only
two endpoints, and the server cannot initiate a connection. In TCP sockets, more than two endpoints are
possible, though rare, and the server can initiate connections. Otherwise the protocols are identical.

Programmers use stream sockets for their high reliability.

VMware, Inc. 13

VMCI Sockets Programming Guide

14

Preparing the Server for a Connection

At the top of the program, include vmci_sockets.h and declare a constant for the socket buffer size. In the
example below, BUFSIZE defines the socket buffer size. It is not based on the size of a TCP packet.

#include “vmci_sockets.h”
#define BUFSIZE 4096

For Winsock you must call the WSAStartup () function.

err = WSAStartup(versionRequested, &wsaData);

if (err = 0) {
printf(stderr, “Could not register with Winsock DLL.\n"”);
goto exit;

}

This is not necessary on non-Windows systems.

Socket() Function Call
To alter a TCP sockets program for VMCI sockets, obtain the new address family (domain) to replace AF_INET.

int afVMCI = VMCISock_GetAFValue();

if ((sockfd = socket(afVMCI, SOCK_STREAM, 0)) == -1) {
perror(“socket™);
goto exit;

}

The VMCISock_GetAFValue() returns a descriptor for the VMCI sockets address family if available.

Set and Get Socket Options

VMCT sockets allows you to set the minimum, maximum, and default size of communicating stream buffers.
Names for the three options are:

B SO_VMCI_BUFFER_SIZE - default size of communicating buffers, 65536 bytes if not set.

B SO_VMCI_BUFFER_MIN_SIZE — minimum size of communicating buffers. Defaults to 128 bytes.

® SO_VMCI_BUFFER_MAX_SIZE — maximum size of communicating buffers. Defaults to 262144 bytes.

To set a new value for a socket option, call the setsockopt () function. To get a value, call getsockopt ().

For example, to halve the size of the communications buffers from 65536 to 32768, and verify that the setting
took effect, include the following code:

uint64 setBuf = 32768, getBuf;

/* reduce buffer to above size and check */

if (setsockopt(sockfd, afVMCI, SO_VMCI_BUFFER_SIZE, (void *)&setBuf, sizeof setBuf) == -1) {
perror(“setsockopt”);
goto close;

}

if (getsockopt(sockfd, afVMCI, SO_VMCI_BUFFER_SIZE, (void*)&getBuf, sizeof getBuf) == -1) {
perror(“getsockopt”);
goto close;

}

if (getBuf != setBuf) {
printf(stderr, “SO_VMCI_BUFFER_SIZE not set to size requested.\n”);
goto close;

}

Parameters setBuf and getBuf must be declared 64 bit, even on 32-bit systems.

To have an effect, socket options must be set before establishing a connection. The buffer size is negotiated
before the connection is established and stays consistent until the connection is closed. For a server socket, set
options before any client establishes a connection. To be sure that this applies to all sockets, set options before
calling listen(). For a client socket, set options before calling connect ().

VMware, Inc.

Chapter 2 Using VMCI Sockets

Bind() Function Call

The bind () call associates the stream socket with the network settings in the sockaddr_vm structure, instead
of the sockaddr_in structure.

struct sockaddr_vm my_addr = {0};

my_addr.svm_family = afVMCI;

my_addr.svm_cid = VMADDR_CID_ANY;

my_addr.svm_port = VMADDR_PORT_ANY;

if (bind(sockfd, (struct sockaddr *) &my_addr, sizeof my_addr) == -1) {
perror("bind");
goto close;

}

The sockaddr_vm structure contains an element for context ID (CID) to specify the virtual machine. For the
server (listener) this could be any connecting virtual machine. VMADDR_CID_ANY and VMADDR_PORT_ANY are
predefined so that at bind or connection time, the appropriate context ID and port number are filled in from
the client. VMADDR_CID_ANY is replaced with the context ID of the virtual machine and VMADDR_PORT_ANY
provides an ephemeral port from the non-reserved range (>= 1024).

The client (connector) can obtain its local CID by calling VMCISock_GetLocalCID().

The bind () function itself should be unchanged from a regular TCP sockets application.

Listen() Function Call

The listen() call prepares to accept incoming client connections. The BACKLOG macro predefines the number
of incoming connection requests that the system accepts before rejecting new ones. This function should be
unchanged from the listen() in a regular TCP sockets application.

if (listen(sockfd, BACKLOG) == -1) {
perror("listen");
goto close;

Accept() Function Call

The accept () call waits indefinitely for an incoming connection to arrive, creating a new socket (and stream
descriptor newfd) when it does. Structure their_addr gets filled with connection information.

struct sockaddr_vm their_addr;

if ((newfd = accept(sockfd, (struct sockaddr *) &their_addr, sizeof their_addr) == -1) {
perror("accept");
goto close;

}

Select() Function Call

The select() call enables a process to wait for events on multiple file descriptors simultaneously. This
function hibernates, waking up the process when an event occurs. You can specify a timeout in seconds and
microseconds, at which point the function will return zero. The read, write, and exception file descriptors can
be specified as NULL if the program can safely ignore them.

if ((select(nfds, &readfd, &writefds, &exceptfds, &timeout) == -1) {
perror("select");
goto close;

Recv() Function Call

The recv() call reads data from the client application. Server and client can communicate the length of data
transmitted, or the server can terminate its recv() loop when the client closes its connection.

char recv_buf[BUFSIZE];

if ((numbytes = recv(sockfd, recv_buf, sizeof recv_buf, 0)) == -1) {
perror("recv");
goto close;

VMware, Inc. 15

VMCI Sockets Programming Guide

16

Send() Function Call

The send () call writes data to the client application. Server and client must communicate the length of data
transmitted, or agree beforehand on a size. Often the server sends only flow control information to the client.

char send_buf[BUFSIZE];

if ((numbytes = send(newfd, send_buf, sizeof send_buf, 0)) == -1) {
perror("send");
goto close;

}

Close() Function Call

Given the original socket descriptor obtained from the socket () call, the close() call closes the socket and
terminates the connection if it is still open. Some server applications close immediately after receiving client
data, while others wait for additional connections. With Winsock, call closesocket () instead of close().

#ifdef _WIN32

return closesocket(sockfd);
#else

return close(sockfd);
#endif

The shutdown () function is like close (), but shuts down the connection.

Poll() Information

Not all socket-based networking programs use pol1(), but if they do, no changes should be required. See
“Select() Function Call” on page 15 for related information.

Read() and Write()

The read() and write() socket calls are provided for convenience. They provide the same functionality as
recv() and send().

Getsockname() Function
The getsockname () function retrieves the local address associated with a socket.

my_addr_size = sizeof my_addr;

if (getsockname(sockfd, (struct sockaddr *) &my_addr, &my_addr_size) == -1) {
perror("getsockname");
goto close;

Having the Client Request a Connection

At the top of the program, include vmci_sockets.h and declare a constant for the socket buffer size. In the
example below, BUFSIZE defines the socket buffer size. It is not based on the size of a TCP packet.

#include “vmci_sockets.h”
#define BUFSIZE 4096

For Winsock you must call the WSAStartup () function. See “Preparing the Server for a Connection” on
page 14 for sample code.

Socket() Function Call

To alter a TCP sockets program for VMCI sockets, obtain the new address family to replace AF_INET.

int afVMCI = VMCISock_GetAFValue();

if ((sockfd = socket(afVMCI, SOCK_STREAM, 0)) == -1) {
perror(“socket™);
goto exit;

}

The VMCISock_GetAFValue () returns a descriptor for the VMCI sockets address family if available.

VMware, Inc.

Chapter 2 Using VMCI Sockets

Connect() Function Call

The connect () call requests a socket connection to the server specified by context ID in the sockaddr_vm
structure, instead of by IP address in the sockaddr_in structure.

struct sockaddr_vm their_addr = {0};

their_addr.svm_family = afVMCI;

their_addr.svm_cid = VMCISock_GetLocalCID(Q);

their_addr.svm_port = SERVER_PORT;

if ((connect(sockfd, (struct sockaddr *) &their_addr, sizeof their_addr)) == -1) {
perror("connect");
goto close;

}

The sockaddr_vm structure contains an element for context ID (CID) to specify the virtual machine. For the
client making a connection, the VMCISock_GetLocalCID() function returns the CID of the virtual machine.

The PORT number is arbitrary, although server (listener) and client (connector) must use the same number,
which must designate a port not already in use. Only privileged processes can use ports < 1024.

The connect () call allows you to use send() and recv() functions instead of sendto() and recvfrom().
The connect () call is not necessary for datagram sockets.

Send() Function Call

The send () call writes data to the server application. Client and server can communicate the length of data
transmitted, or the server can terminate its recv() loop when the client closes its connection.

char send_buf[BUFSIZE];

/* Initialize send_buf with your data. */

if ((numbytes = send(sockfd, send_buf, sizeof send_buf, 0)) == -1) {
perror("send");
goto close;

Recv() Function Call

The recv() call reads data from the server application. Sometimes the server sends flow control information,
so the client must be prepared to receive it. On the client, use the same socket descriptor as for send().

char recv_buf[BUFSIZE];

if ((numbytes = recv(sockfd, recv_buf, sizeof recv_buf, 0)) == -1) {
perror("recv");
goto close;

Close() Function Call

The close() call shuts down a connection, given the original socket descriptor obtained from the socket ()
call. With Winsock, call closesocket () instead of close().

#ifdef _WIN32
return closesocket(sockfd);
#else
return close(sockfd);
#endif
Poll() Information

Not all socket-based networking programs use pol1(), but if they do, no changes should be required.

Read() and Write()

The read() and write() socket calls are provided for convenience. They provide the same functionality as
recv() and send().

VMware, Inc. 17

VMCI Sockets Programming Guide

Datagram VMCI Sockets

The flowchart in Figure 2-2 shows how to establish connectionless sockets on server and client.

Figure 2-2. Connectionless Datagram Sockets

Server socket()
v
bind() .
Client socket()
v
recvfrom()
context ID
wait for client datagram
< sendto()
transmit data
loop
sendto() recvirom()
reply to data
close() close()

In UDP sockets, the server waits for the client to transmit, and accepts datagrams. In VMCI sockets, the server
and client communicate similarly with datagrams.

Programmers use datagram sockets for their speed and low overhead.

Preparing the Server for a Connection

At the top of the program, include vmci_sockets.h and declare a constant for buffer size. This does not have
to be based on the size of a UDP datagram.

#include “vmci_sockets.h”
#define BUFSIZE 2048

For Winsock you must call the WSAStartup () function.

WSA wsaData;
WORD versionRequested = MAKEWORD(2, 0);
return WSAStartup(versionRequested, &wsaData);

This is not necessary on non-Windows systems.

Socket() Function
To alter a UDP socket program for VMCI sockets, obtain the new address family to replace AF_INET.

int afVMCI = VMCISock_GetAFValue();

if ((sockfd_dgram = socket(afVMCI, SOCK_DGRAM, 0)) == -1) {
perror("socket");
goto exit;

}

This call is similar to the one for stream sockets, but has SOCK_DGRAM instead of SOCK_STREAM.

The VMCISock_GetAFValue () returns a descriptor for the VMCI sockets address family if available.

Socket Options

Currently VMCI sockets offers no options for datagram connections.

18 VMware, Inc.

Chapter 2 Using VMCI Sockets

Bind() Function

The bind () call associates the datagram socket with the network settings in the sockaddr_vm structure,
instead of the sockaddr_in structure.

struct sockaddr_vm my_addr = {0};

my_addr.svm_family = afVMCI;

my_addr.svm_cid = VMADDR_CID_ANY;

my_addr.svm_port = VMADDR_PORT_ANY;

if (bind(sockfd, (struct sockaddr *) &my_addr, sizeof my_addr) == -1) {
perror("bind");
goto close;

}

The sockaddr_vm structure contains an element for context ID (CID) to specify the virtual machine. For the
server (listener) this could be any connecting virtual machine. VMADDR_CID_ANY and VMADDR_PORT_ANY are
predefined so that at bind or connection time, the appropriate context ID and port number are filled in from
the client. VMADDR_CID_ANY is replaced with the context ID of the virtual machine and VMADDR_PORT_ANY
provides an ephemeral port from the non-reserved range (>= 1024).

The client (connector) can obtain its local CID by calling VMCISock_GetLocalCID().

The bind) function itself should be unchanged from a regular UDP datagram application.

Getsockname() Function

if (getsockname(sockfd, (struct sockaddr *) &my_addr, &svm_size) == -1) {
perror("getsockname");
goto close;

}

The getsockname () function retrieves the local address associated with a socket.

Recvfrom() Function

The recvfrom() call reads data from the client application. Server and client can communicate the length of
data transmitted, or the server can terminate its recvfrom() loop when the client closes its connection.

if ((numbytes = recvfrom(sockfd, buf, sizeof buf, 0,
(struct sockaddr *) &their_addr, &svm_size)) == -1) {
perror("recvfrom");
goto close;

}

Sendto() Function

The sendto() call optionally writes data back to the client application. See “Sendto() Function” on page 20.

Close() Function

The close() call shuts down transmission, given the original socket descriptor obtained from the socket()
call. Some server applications close immediately after receiving client data, while others wait for additional
connections. With Winsock, call closesocket () instead of close().

#ifdef _WIN32

return closesocket(sockfd);
#else

return close(sockfd);
#endif

Having the Client Request a Connection

At the top of the program, include vmci_sockets.h and declare a constant for buffer size. This does not have
to be based on the size of a UDP datagram.

#include “vmci_sockets.h”
#define BUFSIZE 2048

VMware, Inc. 19

VMCI Sockets Programming Guide

For Winsock you must call the WSAStartup () function. See “Preparing the Server for a Connection” on
page 18 for sample code.

Socket() Function

To alter a UDP socket program for VMCI sockets, obtain the new address family to replace AF_INET.

int afVMCI = VMCISock_GetAFValue();

if ((sockfd = socket(afVMCI, SOCK_DGRAM, 0)) == -1) {
perror(“socket™);
goto exit;

}

Sendto() Function

Because this is a connectionless protocol, you pass the socket address structure their_addr as a parameter to
the sendto() call.

struct sockaddr_vm their_addr = {0};
their_addr.svm_family = afVMCI;
their_addr.svm_cid = SERVER_CID;
their_addr.svm_port = SERVER_PORT;
if ((numbytes = sendto(sockfd, buf, BUFIZE, 0,
(struct sockaddr *) &their_addr, sizeof their_addr)) == -1) {
perror("sendto");
goto close;

}

The sockaddr_vm structure contains an element for context ID (CID) to specify the virtual machine. For the
client making a connection, the VMCISock_GetLocalCID() function returns the CID of the virtual machine.

The PORT number is arbitrary, although server (listener) and client (connector) must use the same number,
which must designate a port not already in use. Only privileged processes can use ports < 1024.

Connect() and Send()

Even with this connectionless protocol, applications can call the connect () function once to set the address,
and call the send() function repeatedly without having to specify the sendto() address each time.

if ((connect(sockfd, (struct sockaddr *) &their_addr, sizeof their_addr)) == -1) {
perror("connect");
goto close;

}

if ((numbytes = send(sockfd, send_buf, BUFSIZE, 0)) == -1) {
perror("send");
goto close;

}

Recvfrom() Function

The recvfrom() call optionally reads data from the server application. See “Recvfrom() Function” on page 19.

Close() Function

The close() call shuts down a connection, given the original socket descriptor obtained from the socket ()
call. With Winsock, call closesocket () instead of close(), as shown in “Close() Function” on page 19.

20 VMware, Inc.

Learning About TCP Sockets

Most socket-based applications employ a client/server approach to communications. Rather than trying to
start two network applications simultaneously, one application tries to make itself always available (the server
or the provider) while another requests services as needed (the client or the consumer).

VMCT sockets are designed to use the client/server approach but, unlike TCP sockets, they do not support two
endpoints simultaneously initiating connections with one another.

Hidden Information

Many people are confused by AF_INET as opposed to PF_INET. Linux defines them as identical. This manual
uses AF only. AF means address family, while PF means protocol family. As designed, a single protocol family
could support multiple address families. However as implemented, no protocol family ever supported more
than one address family. For Internet Protocol version 6 (IPv6), AF_INET6 requires PF_INET6.

WinSock includes virtually all of the Berkeley sockets API, as well as additional WSA functions to cope with
cooperative multitasking and the event-driven programming model of Windows.

Resources on the Web

Here is a succinct and comprehensible API explanation:

http://www.cas.mcmaster.ca/~qiao/courses/cs3mh3/tutorials/socket.html

Wikipedia
Here is an overview of the history and design of sockets:

http://en.wikipedia.org/wiki/Berkeley_sockets

IBM

Here is a good technical description of programming with sockets:

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzab6/rzab6designrec.htm

Sockaddr

Here is an overview of Winsock design and usage:

http://www .sockaddr.com/TheSocketsParadigm.html

MSDN

Here is reference information about Windows sockets, Winsock:

http://msdn2.microsoft.com/en-us/library/ms740673(VS.85).aspx

VMware, Inc. 21

VMCI Sockets Programming Guide

Linux Man Pages
socket(7) — type man socket on a Linux system.
http://www.yo-linux.com/cgi-bin/man2html?cgi_command=socket(2)

http://www.yo-linux.com/cgi-bin/man2html?cgi_command=socket(7)

Hardcopy Books

Internetworking with TCP/IP, Volume 3: Client-Server Programming and Applications, Linux/Posix Sockets Version,
by Douglas E. Comer and David L. Stevens, 601 pages, Prentice-Hall, 2000.

Unix Network Programming, Volume 1: The Sockets Networking API, Third Edition, by W. Richard Stevens (RIP),
Bill Fenner, and Andrew M. Rudoff, 1024 pages, Addison-Wesley, 2003.

22 VMware, Inc.

Glossary

D datagram
A self-contained unit of data containing enough information to be routed from its source to its destination
without reliance on earlier exchanges between source and destination hosts and the transporting network.

S socket
A communications connection endpoint with a name and address in a network. The two endpoints of a
socket can reside on the same system or on different systems across the network. Sockets are most often
used for network applications, but they are also useful for interprocess communications on a single server.

stream socket
A network connection that provides a two-way, sequenced, reliable, unduplicated flow of data without
record boundaries, with well-defined mechanisms for establishing connections and detecting errors.

\% VMCI
Virtual machine communication interface, a shared memory API and datagram interface now replaced by

VMCT sockets, a stream and datagram sockets interface.

VMware, Inc. 23

VMCI Sockets Programming Guide

24 VMware, Inc.

Index

A S
about VMCI sockets 7 select() 15
accept() 15 send() 16, 17
address structure for sockets 11 sendto() 19, 20
AF_INET and PF_INET 21 SOCK_DGRAM 12
AF_INET and VMCI sockets 10 SOCK_STREAM 12
socket() 7,11, 14, 16, 18, 20
B stream VMCI sockets 13
bind() 11, 15, 19
books about sockets 22 T
technical support resources 5
C
close() 16, 17, 19, 20 U
connect() 17 use cases for VMCI sockets 8
connectionless socket 11
connection-oriented socket 11 \
context ID (CID) summary 10 VMCl library deprecated 8
VMCISock_GetAFValue() 7, 14, 16, 18
D VMCISock_GetlLocalCID() 11, 15, 17, 19, 20
datagram VMCI sockets 18
W
G Web resources about sockets 21
getsockname() 16, 19 write() 16, 17
guest to guest 8, 12 WSAStartup() 14, 18

guest to host 8, 12

H

hidden information about sockets 21
host to guest 8, 12

illustration of datagram VMCI sockets 10
illustration of stream VMCI sockets 9

L
listen() 15

P

PF_INET and AF_INET 21
poll() 16, 17

porting sockets applications 10

R

read() 16, 17
recv() 15,17
recvfrom() 19, 20
release contents 8

VMware, Inc.

VMCI Sockets Programming Guide

26 VMware, Inc.

	VMCI Sockets Programming Guide
	Contents
	About This Book
	Revision History
	Intended Audience
	API and SDK Documentation
	Document Feedback

	Technical Support and Education Resources
	Online Support
	Support Offerings
	VMware Education Services

	About VMCI Sockets
	Introducing VMCI Sockets
	How VMCI Sockets Work
	Efficiency Compared to Network Sockets
	Possible Use Cases

	Contents of This Release
	Experimental VMCI Library Deprecated

	Illustrated Connections with VMCI Sockets
	Web Access with Stream VMCI Sockets
	Home Directories with Datagram VMCI Sockets

	Porting Existing Socket Applications
	Including a New Header File
	Changing AF_INET to VMCI Sockets
	Obtaining the Context ID (CID)
	The VMCISock_GetLocalCID() Function

	Connection-oriented Stream Socket
	Connectionless Datagram Socket
	Initializing the Address Structure
	Limitations on Persistence

	Communicating Between Guests
	VMCI Sockets and the Network Stack
	Setting up a Networkless Guest

	Communicating between Guest and Host
	Using UDP Datagram Sockets

	Using VMCI Sockets
	Stream VMCI Sockets
	Preparing the Server for a Connection
	Socket() Function Call
	Set and Get Socket Options
	Bind() Function Call
	Listen() Function Call
	Accept() Function Call
	Select() Function Call
	Recv() Function Call
	Send() Function Call
	Close() Function Call
	Poll() Information
	Read() and Write()
	Getsockname() Function

	Having the Client Request a Connection
	Socket() Function Call
	Connect() Function Call
	Send() Function Call
	Recv() Function Call
	Close() Function Call
	Poll() Information
	Read() and Write()

	Datagram VMCI Sockets
	Preparing the Server for a Connection
	Socket() Function
	Socket Options
	Bind() Function
	Getsockname() Function
	Recvfrom() Function
	Sendto() Function
	Close() Function

	Having the Client Request a Connection
	Socket() Function
	Sendto() Function
	Connect() and Send()
	Recvfrom() Function
	Close() Function

	Learning About TCP Sockets
	Hidden Information
	Resources on the Web
	Wikipedia
	IBM
	Sockaddr
	MSDN

	Linux Man Pages
	Hardcopy Books

	Glossary
	Index

